Cách tìm vi phân của hàm số (hay, chi tiết) – Phương pháp giải các dạng bài tập Toán 11 chi tiết giúp học sinh biết cách làm bài tập Toán 11.-Cách tìm vi phân của hàm số (hay, chi tiết)
Cách tìm vi phân của hàm số (hay, chi tiết)
Bài viết Cách tìm vi phân của hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách tìm vi phân của hàm số.
Cách tìm vi phân của hàm số (hay, chi tiết)
Cho hàm có y = f(x) xác định trên (a; b) và có đạo hàm tại x ∈ (a; b). Giả sử Δx là số gia của x sao cho x + Δx ∈ (a; b)
Tích f ‘(x)Δx(hay y ‘Δx) được gọi là vi phân của hàm số f(x) tại x, ứng với số gia Δx, kí hiệu là df(x) hay dy
Chú ý. Vì dx = Δx nên:
dy = df(x) = f ‘(x)dx
Ứng dụng vi phân vào phép tính gần đúng
Với |Δx| đủ nhỏ, ta có
hay Δy = f(x0 + Δx) – f(x0) = f ‘(x0)Δx
Do đó f(x0 + Δx) ≈ f(x0) + f ‘(x0)Δx ≈ f(x0) + df(x0)
Bài 1: Cho hàm số y = sinx – 3cosx. Tính vi phân của hàm số.
Hướng dẫn:
Ta có dy = (sinx – 3cosx)’dx = (cosx + 3sinx)dx
Bài 2: Cho hàm số . Tính vi phân của hàm số đó.
Hướng dẫn:
Ta có
Bài 3: Xét hàm số y = Tính vi phân của hàm số đó.
Hướng dẫn:
Ta có :
Bài 4: Cho hàm số y = x3 – 5x + 6. Tính vi phân của hàm số đó.
Hướng dẫn:
Ta có
dy =(x3-5x+6)’dx = (3x2-5)dx
Bài 5: Cho hàm số y = 1/(3x3). Tính vi phân của hàm số đó
Hướng dẫn:
Ta có
Bài 6: Cho hàm số .Tính vi phân của hàm số đó.
Hướng dẫn:
Ta có
Bài 7: Cho hàm số . Tính vi phân của hàm số đó
Hướng dẫn:
Ta có
Bài 1: Tìm vi phân của hàm số y = xsinx + cosx
A. dy = xcosxdx
B. dy = xcosx
C. dy = (2sinx + xcosx)dx
D. dy = (sinx+cosx)dx
Lời giải:
Đáp án: A
Đáp án là A
y’ = sinx + xcosx – sinx = xcosx
do đó dy = xcosxdx
Bài 2: Tìm vi phân của hàm số
Lời giải:
Đáp án: C
Chọn đáp án C
Bài 3: Cho hàm số f(x) = x2 – x + 2. Tính Δf(1) và df(1)nếu Δx = 0,1
A. Δf(1) = 0,11; df(1) = 0,2
B. Δf(1) = 0,11; df(1) = 0,1
C. Δf(1) = 0,2; df(1) = 0,11
D. Δf(1) = 0,2; df(1) = 0,1
Lời giải:
Đáp án: B
Ta có: Δf(1) = f(1+ 0.1) – f(1) = 0.11 và df(1) = f ‘(1).Δx = 0.1
Đáp án B
Bài 4: Tìm vi phân của hàm số y = (2x+1)5
A. dy = 10(2x+1)4
B. dy = 5(2x+1)4 dx
C. dy = (2x+1)4 dx
D. dy = 10(2x+1)4 dx
Lời giải:
Đáp án: A
Ta có: dy = f ‘(x)dx = 5(2x+1)4.2dx = 10(2x+1)4dx
Đáp án A
Bài 5: Tìm vi phân của hàm số y = cos3(1-x)
A. dy = -sin2(1-x)dx
B. dy = 3cos2(1-x).sin(1-x)dx
C. dy = -3cos2(1-x)sin(1-x)dx
D. dy = 3cos2(1-x)dx
Lời giải:
Đáp án: A
Ta có: dy = f ‘(x)dx = 3cos2(1-x)(cos(1-x))’ dx
= -3cos2(1-x)sin(1-x) (1-x)’ dx
= 3cos2(1-x)sin(1-x)dx
Đáp án A
Bài 6: Tìm vi phân của hàm số
Lời giải:
Đáp án: C
Ta có:
Bài 7: Tính vi phân của hàm số y = sin3(2x+1)
A. dy = 3sin2(2x+1)cos(2x+1)dx
B. dy = -6sin2(2x+1)cos(2x+1)dx
C. dy = 6sin2(2x+1)cos(2x+1)dx
D. dy = 3sin2(2x+1)cos(2x+1)dx
Lời giải:
Đáp án: C
Đáp án C
Ta có: dy = f ‘(x)dx = 6sin2(2x+1)cos(2x+1)dx
Bài 8: Cho hàm số y = f(x) = (x-1)2. Biểu thức nào sau đây chỉ vi phân của hàm số f(x)?
A. dy = 2(x – 1)dx
B. dy = (x-1)2 dx
C. dy = 2(x – 1)
D. dy = (2x – 1)dx
Lời giải:
Đáp án: A
Chọn A.
Ta có dy = f ‘(x)dx = 2(x-1)dx
Bài 9: Tìm vi phân của các hàm số y = x3 + 2x2
A. dy = (3x2-4x)dx
B. dy = (3x2+x)dx
C. dy = (3x2+2x)dx
D. dy = (3x2+4x)dx
Lời giải:
Đáp án: D
Chọn D
dy = (3x2 + 4x)dx
Bài 10: Tìm vi phân của các hàm số
Lời giải:
Đáp án: D
Chọn D
Bài 11: Cho hàm số y = x3 – 9x2 + 12x – 5. Vi phân của hàm số là:
A. dy = (3x2-18x+12)dx
B. dy = (-3x2-18x+12)dx
C. dy = -(3x2-18x+12)dx
D. dy = (-3x2+18x-12)dx
Lời giải:
Đáp án: A
Chọn A
Ta có
dy = (x3-9x2+12x-5)’dx = (3x2-18x+12)dx
Bài 12: Tìm vi phân của các hàm số y = (3x+1)10
A. dy = 10(3x+1)9 dx
B. dy = 30(3x+1)10 dx
C. dy = 9(3x+1)10 dx
D. dy = 30(3x+1)9 dx
Lời giải:
Đáp án: D
Chọn D
dy = 30(3x+1)9dx
Bài 13: Tìm vi phân của các hàm số y = sin2x + sin3x
A. dy = (cos2x + 3 sin2x cosx)dx
B. dy = (2cos2x + 3 sin2x cosx)dx
C. dy = (2cos2x + sin2x cosx)dx
D. dy = (cos2x + sin2x cosx)dx
Lời giải:
Đáp án: B
Chọn B
dy = (2cos2x+ 3sin2xcosx)dx
Bài 14: Tìm vi phân của các hàm số y = tan2x.
A. dy = (1 + tan22x)dx
B. dy = (1 – tan22x)dx
C. dy = 2(1 – tan22x)dx
D. dy = 2(1 + tan22x)dx
Lời giải:
Đáp án: D
Chọn D
dy = 2(1+tan22x)dx
Bài 15: Tìm vi phân của các hàm số
Lời giải:
Đáp án: D
Chọn D
Bài 1. Cho hàm số y = sin2x. Vi phân của hàm số là:
A. dy = -sin2xdx.
B. dy = sin2xdx.
C. dy = sinxdx.
D. dy = 2cosdx.
Bài 2. Cho hàm số y = f(x) = (x – 1)2. Biểu thức nào sau đây là vi phân của hàm số đã cho?
A. dy = 2(x – 1)dx.
B. dy = 2(x – 1).
C. dy = (x – 1)dx.
D. dy = (x -1)2dx.
Bài 3. Vi phân của hàm số f(x) = 3x2 – x tại điểm x = 2, ứng với Δx = 0,1 là?
Bài 4. Cho hàm số f(x) = sin3x + x2. Tính vi phân của hàm số tại x = π2.
Bài 5. Tìm vi phân của hàm số y = (x3 + 2x + 1)5.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn