10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận) – Trọn bộ đề thi Toán 9 Cánh diều Học kì 1, Học kì 2 có đáp án giúp bạn ôn tập đạt kết quả cao trong bài thi Toán 9.-10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

Với bộ 10 Đề thi Giữa kì 1 Toán 9 Cánh diều năm 2024 có đáp án và ma trận được biên soạn và chọn lọc
từ đề thi Toán 9 của các trường THCS trên cả nước sẽ giúp học sinh lớp 9 ôn tập và đạt kết quả cao trong các bài thi Giữa kì 1 Toán 9.

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

Xem thử

Chỉ từ 150k mua trọn bộ Đề thi Giữa kì 1 Toán 9 Cánh diều bản word có lời giải chi tiết:

Phòng Giáo dục và Đào tạo …..

Đề thi Giữa kì 1 – Cánh diều

Năm học 2024 – 2025

Môn: Toán 9

Thời gian làm bài: phút

(Đề 1)

A. TRẮC NGHIỆM (3,0 điểm)

Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 4, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Câu 1. Mẫu thức chung khi quy đồng mẫu thức của phương trình 1x−1+3×2−1+x=0 là

A. (x – 1)2.

B. (x + 1)2.

C. (x – 1)(x + 1).

D. x(x – 1)(x + 1).

Câu 2. Cho hệ phương trình 12x−12y=−1−3x+3y=5. Cho các khẳng định sau:

(i) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: 6y = –1.

(ii) Nhân phương trình thứ nhất của hệ với 6, rồi cộng với phương trình thứ hai ta được phương trình: 0x = –1.

(iii) Hệ phương trình đã cho vô nghiệm.

Số khẳng định đúng trong các khẳng định trên là

A. 0.

B. 1.

C. 2.

D. 3.

Câu 3. Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c. Khẳng định nào sau đây là đúng?

A. sinB=ca.

B. c=bcotB.

C. b = c.cosC.

D. c = b.tanC.

Câu 4. Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là đúng?

A. AB2 = BC2 + AC2.

B. sinC = cosB.

C. cotB – tanB = 0.

D. cotC=ACAB.

Phần 2. Câu trắc nghiệm đúng sai

Trong câu 5, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).

Câu 5. Cho bất đẳng thức –5a > 3.

a) Số a có giá trị là một số âm.

Xem thêm  Đề kiểm tra 1 tiết Toán 9 Chương 1 Hình học có đáp án (10 đề)

b) Biểu thức 3 – 5a có giá trị là một số dương.

c) Biểu thức a+35 có giá trị là một số dương.

d) Biểu thức –10a – 10 có giá trị là một số âm.

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn

Trong mỗi câu 6 và câu 7, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Câu 6. Tìm nghiệm của hệ phương trình 32x−y−6x+y=−112x−y−1x+y=0.

Câu 7. Cho tam giác ABC vuông tại A có AB = 5 cm và đường cao AH = 3 cm. Tính số đo góc C (làm tròn kết quả đến phút).

B. TỰ LUẬN (7,0 điểm)

Bài 1. (2,5 điểm)

1. Giải các phương trình sau:

a) 4x(x + 3) – 3x – 9 = 0.

b) x+2x−2=x−2x+2+16×2−4.

2. Giải các bất phương trình sau:

a) 3x – 8 < 4x – 12.

b) 3(x – 2) – 5 > 3(2x – 1).

c) 4x−12+6x−196≥9x−113.

Bài 2. (2,0 điểm)

1. Xác định a và b sao cho hệ phương trình ax+2by=−18bx−3ay=−3 nhận cặp số (–3; 2) làm nghiệm.

2. Giải bài toán sau bằng cách lập hệ phương trình:

Một ôtô dự định đi từ A đến B trong khoảng thời gian nhất định. Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi chậm mất so với dự định là 5 giờ. Tính vận tốc và thời gian dự định của ôtô.

Bài 3. (2,0 điểm)

1. Cho hình vẽ bên. Tính số đo góc α và các độ dài x, y (góc làm tròn đến độ và độ dài làm tròn đến hàng phần trăm).

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

2. Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm A, B cách nhau 500 m, người ta nhìn thấy đỉnh núi với góc nâng lần lượt là 34° và 38° (hình vẽ).

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

Bài 4. (0,5 điểm) Cho tứ giác ABCD có α là góc nhọn tạo bởi hai đường chéo, chứng minh rằng:

SABCD=12AC⋅BD⋅sinα.

—–HẾT—–

ĐÁP ÁN

A. TRẮC NGHIỆM (3,0 điểm)

Bảng đáp án trắc nghiệm:

Câu

1

2

3

4

5a

5b

5c

5d

6

7

Đáp án

C

C

D

B

Đ

Đ

S

S

(2; 1)

C^≈53°8′

B. TỰ LUẬN (7,0 điểm)

Bài 1. (2,5 điểm)

Hướng dẫn giải

1. a) 4x(x + 3) – 3x – 9 = 0

        4x(x + 3) – 3(x + 3) = 0

        (x + 3)(4x – 3) = 0

        x + 3 = 0 hoặc 4x – 3 = 0

        x = –3 hoặc x = 34.

Vậy phương trình đã cho có hai nghiệm là x = –3; x = 34.

1. b) Điều kiện xác định: x ≠ 2, x ≠ –2.

x+2x−2=x−2x+2+16×2−4

x+22x−2x+2=x−22x−2x+2+16x−2x+2

(x + 2)2 = (x – 2)2 + 16

x2 + 4x + 4 = x2 – 4x + 4 + 16

8x = 16

  x = 2 (không thỏa mãn điều kiện)

Vậy phương trình đã cho vô nghiệm.

2. a) 3x – 8 < 4x – 12

        3x – 4x < – 12 + 8

        –x < –4

        x > 4.

Vậy nghiệm của bất phương trình đã cho là x > 4.

2. b) 3(x – 2) – 5 > 3(2x – 1)

        3x – 6 – 5 > 6x – 3

        3x – 6x > – 3 + 6 + 5

        –3x > 8

        x < −83.

Vậy nghiệm của bất phương trình đã cho là x < −83.

2. c) 4x−12+6x−196≥9x−113

        34x−16+6x−196≥29x−116

        3(4x – 1) + 6x – 19 ≥ 2(9x – 11)

        12x – 3 + 6x – 19 ≥ 18x – 22

        12x + 6x – 18x ≥ – 22 + 3 + 19

        0x ≥ 0

Vậy nghiệm của bất phương trình đã cho là x ∈ ℝ.

Xem thêm  10 Đề thi Học kì 1 Toán 9 Kết nối tri thức (có đáp án + ma trận)

Bài 2. (2,0 điểm)

Hướng dẫn giải

1. Để hệ phương trình ax+2by=−18bx−3ay=−3 nhận cặp số (–3; 2) làm nghiệm thì x = –3 và y = 2 thỏa mãn hệ phương trình. Khi đó, ta có a⋅−3+2b⋅2=−18b⋅−3−3a⋅2=−3hay −3a+4b=−18−6a−3b=−3.

Nhân hai vế của phương trình thứ hai với 34 ta được hệ phương trình mới −3a+4b=−18−8a−4b=−4.

Cộng từng vế hai phương trình của hệ trên, ta được:

–11a = –22 suy ra a = 2.

Thay a = 2 vào phương trình –3a + 4b = –18, ta được:

–3.2 + 4b = –18, suy ra 4b = –12 nên b = –3.

Vậy a = 2 và b = –3.

2. Gọi x (km/h) là vận tốc dự định của ôtô và y (giờ) là thời gian dự định của ôtô để đi hết quãng đường AB (x > 10, y > 3).

– Quãng đường AB là xy (km).

– Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Khi đó, ta có:

  ⦁ Vận tốc của ôtô lúc này là: x + 10 (km/h).

  ⦁ Thời gian ôtô đi hết quãng đường AB là: y – 3 (giờ).

  ⦁ Quãng đường AB là: (x + 10)(y – 3) (giờ).

Ta có phương trình: (x + 10)(y – 3) = xy

                                 xy – 3x + 10y – 30 = xy

                                 – 3x + 10y = 30  (1)

– Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi muộn hơn so với dự định là 5 giờ. Khi đó, ta có:

  ⦁ Vận tốc của ôtô lúc này là: x – 10 (km/h).

Xem thêm  Đề thi Toán 9 Học kì 1 năm 2024 có đáp án (85 đề)

  ⦁ Thời gian ôtô đi hết quãng đường AB là: y + 5 (giờ).

  ⦁ Quãng đường AB là: (x – 10)(y + 5) (giờ).

Ta có phương trình: (x – 10)(y + 5) = xy

                                 xy + 5x – 10y – 50 = xy

                                 5x – 10y = 50  (2)

Từ phương trình (1) và phương trình (2) ta có hệ phương trình: −3x+10y=305x−10y=50

Cộng từng vế hai phương trình của hệ, ta được: 2x = 80 suy ra x = 40 (thỏa mãn).

Thay x = 40 vào phương trình (1), ta được:

–3.40 + 10y = 30 hay 10y = 150 suy ra y = 15 (thỏa mãn).

Vậy vận tốc dự định của ôtô là 40 (km/h) và thời gian ôtô đi hết quãng đường AB là 15 (giờ).

Bài 3. (2,0 điểm)

Hướng dẫn giải

1. Xét ∆ABD vuông tại B, ta có:

tanBAD^=BDAB=35, từ đó ta tìm được α=BAD^≈31°.

Suy ra BAC^=BAD^+DAC^≈31°+37°=68°.

Xét ∆ABC vuông tại B, ta có:

⦁ BC = AB⋅tanBAC^ ≈5⋅tan68°≈12,38, suy ra x = CD = BC – BD ≈ 12,38 – 3 = 9,38;

⦁ AB = AC⋅cosBAC^ suy ra y = AC = ABcosBAC^≈5cos68°≈13,35.

Vậy α ≈ 31°; x ≈ 9,38 và y ≈ 13,35.

2. Đặt: BC = x (m), khi đó AC = AB + BC = 500 + x (m).

Xét ∆ACD vuông tại C, ta có: CD = AC⋅tanCAD^ = (500 + x).tan34°.

Xét ∆BCD vuông tại C ta có: CD = BC⋅tanCBD^ = x.tan38°.

Do đó, ta có: (500 + x).tan34° = x.tan38°

                       500.tan34° + x.tan34° = x.tan38°

                       x.tan38° – x.tan34° = 500.tan34°

                       x(tan38° – tan34°) = 500.tan34°

                       x =  500⋅tan34°tan38°−tan34°≈3  158,5 (m).

Suy ra CD = x.tan38° ≈ 3 158,5 . tan 38° ≈ 2 468 (m).

Vậy ngọn núi cao khoảng 2 468 mét.

Bài 4. (0,5 điểm)

Hướng dẫn giải

Gọi E là giao điểm của hai đường chéo AC và BD. Kẻ đường cao AH xuống BD và đường cao DK xuống AC.

Xét ∆AEH vuông tại H có: AH = AE.sinα.

Do đó SADE=12DE⋅AH=12DE⋅AE⋅sinα.

Ta có: SADESADC=12DK⋅AE12DK⋅AC=AEAC

Suy ra SADC=ACAE⋅SADE = ACAE⋅12DE⋅AE⋅sinα = 12DE⋅AC⋅sinα.

Tương tự, ta có: SABC=12BE⋅AC⋅sinα

Khi đó: SABCD = SADC + SABC = 12DE.AC.sinα = 12DE.AC.sinα.

                                            = 12AC.(DE + BE).sinα = 12AC.BD.sinα.

Vậy SABCD = 12AC.BD.sinα.

10 Đề thi Giữa kì 1 Toán 9 Cánh diều (có đáp án + ma trận)

—–HẾT—–

…………………………..

…………………………..

…………………………..

Trên đây tóm tắt một số nội dung miễn phí trong bộ Đề thi Toán 9 năm 2024 mới nhất,
để mua tài liệu trả phí đầy đủ, Thầy/Cô vui lòng xem thử:

Xem thử

Tham khảo đề thi Toán 9 Cánh diều có đáp án hay khác:


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *