Xác định tâm và bán kính của đường tròn (cách giải + bài tập) – Tổng hợp các dạng bài tập Toán 10 sách mới với phương pháp giải chi tiết giúp bạn biết cách làm bài tập Toán 10.-Xác định tâm và bán kính của đường tròn (cách giải + bài tập)
Xác định tâm và bán kính của đường tròn (cách giải + bài tập)
Bài viết phương pháp giải bài tập Xác định tâm và bán kính của đường tròn lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện
đa dạng giúp học sinh ôn tập, biết cách làm bài tập Xác định tâm và bán kính của đường tròn.
Xác định tâm và bán kính của đường tròn (cách giải + bài tập)
1. Phương pháp giải
⦁ Nếu phương trình đường tròn (C) được cho dạng:
(x – a)2 + (y – b)2 = R2.
Tâm của đường tròn (C) là: I(a; b).
Bán kính của đường tròn (C) là R.
⦁ Nếu phương trình đường tròn (C) được cho dạng:
x2 + y2 – 2ax – 2by + c = 0 (a2 + b2 – c > 0)
Tâm của đường tròn là I(a; b)
Bán kính của đường tròn là R=a2+b2−c.
2. Ví dụ minh họa
Ví dụ 1. Xác định tâm và bán kính của đường tròn (C): (x + 5)2 + (y – 4)2 = 16.
Hướng dẫn giải:
Tâm của đường tròn là I(–5; 4).
Bán kính của đường tròn là R = 4.
Ví dụ 2. Cho đường tròn (C): x2 + y2 – 6x + 4y – 12 = 0. Xác định tâm I và bán kính R của đường tròn (C).
Hướng dẫn giải:
Đường tròn có tâm I(3; –2), bán kính R = 32+−22−−12=5
3. Bài tập tự luyện
Bài 1. Trong mặt phẳng tọa độ Oxy, cho đường tròn x2 + y2 – 2x + 6y – 1 = 0. Tâm của đường tròn (C) có tọa độ là
A. (–2; 6);
B. (–1; 3);
C. (2; –6);
D. (1; –3).
Bài 2. Trong mặt phẳng tọa độ Oxy, tâm I và bán kính R của đường tròn (C): x2 + y2 – 2x + 6y – 8 = 0 lần lượt là
A. I(–1; –3), R = 22;
B. I(1; –3), R = 32;
C. I(1; –3), R = 2;
D. I(1; 3), R = 2.
Bài 3. Trong mặt phẳng tọa độ Oxy, đường tròn (x – 3)2 + (y + 7)2 = 9 có tâm và bán kính là
A. I(–3; –7), R = 9;
B. I(–3; 7), R = 9;
C. I(3; –7), R = 3;
D. I(3; 7), R = 3.
Bài 4. Trong mặt phẳng tọa độ Oxy, đường tròn x2 + y2 – 10y – 24 = 0 có bán kính bằng bao nhiêu?
A. 49;
B. 7;
C. 1;
D. 29.
Bài 5. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 + 2(2x + 3y – 6) = 0 có tâm là
A. I(–2; –3);
B. I(2; 3);
C. I(4; 6);
D. I(–4; –6).
Bài 6. Cho đường cong (Cm): x2 + y2 – 8x + 10y + m = 0. Với giá trị nào của m thì (Cm) là đường tròn có bán kính bằng 7?
A. m = 4;
B. m = 8;
C. m = –4;
D. m = –8.
Bài 7. Trong mặt phẳng tọa độ Oxy, bán kính của đường tròn (C): 3x2 + 3y2 – 6x + 9y – 9 = 0 là
A. R=152;
B. R=52;
C. R = 25;
D. R=5.
Bài 8. Trong mặt phẳng tọa độ Oxy, cho đường tròn 2x2 + 2y2 – 8x + 4y – 1 = 0 có tâm là
A. I(–8; 4);
B. I(2; –1);
C. I(8; –4);
D. I(–2; 1).
Bài 9. Cho hai điểm A(–2; 1) và B(3; 5). Khẳng định nào sau đây là đúng về đường tròn (C) có đường kính AB?
A. Đường tròn (C) có phương trình là x2 + y2 + x + 6y – 1 = 0;
B. Đường tròn (C) có tâm I12;3;
C. Đường tròn (C) có bán kính R=41.
D. Cả A, B, C đều đúng.
Bài 10. Tâm đường tròn (C): x2 + y2 – 10x + 1 = 0 cách trục Oy một khoảng bằng
A. –5;
B. 0;
C. 5;
D. 10.
Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:
Lời giải bài tập lớp 10 sách mới:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn