Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm – Tổng hợp các dạng bài tập Toán 11 với phương pháp giải chi tiết giúp bạn biết cách làm bài tập Toán 11.-Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Bài viết Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm.

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

*Ý nghĩa hình học của đạo hàm:

Đạo hàm của hàm số y= f(x) tại điểm x0 là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm M0(x0; f(x0) ).

Khi đó phương trình tiếp tuyến của (C) tại điểm M0 là:

y–y0=f’ (x0).(x–x0)

Bài toán 1. Viết phương trình tiếp tuyến của đồ thị hàm số y= f(x) tại điểm M(x0; f(x0)).

– Tính đạo hàm của hàm số y= f(x)

⇒ f’( x0).

-Tiếp tuyến của đồ thị hàm số y= f(x) tại M( x0;y0) là:

y- y0= f’(x0) ( x- x0)

Bài toán 2. Viết phương trình tiếp tuyến của đồ thị hàm số y= f(x) biết hoành độ tiếp điểm x= x0.

+ Tính y0= f(x0).

+ Tính đạo hàm của hàm số ⇒ f^’ (x0 )

⇒ phương trình tiếp tuyến: y- y0= f’(x0) ( x- x0)

Bài toán 3. Viết phương trình tiếp tuyến của đồ thị hàm số y= f(x) biết tung độ tiếp điểm bằng y0.

+ Gọi M(x0; y0) là tiếp điểm

+ Giải phương trình f(x)= y0 ta tìm được các nghiệm x0.

+ Tính đạo hàm của hàm số ⇒ f'(x0)

⇒ Phương trình tiếp tuyến của đồ thị hàm số.

Ví dụ 1. Cho hàm số y= x3– 2x+ 1. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M( 0;1 )

A. y= 2x+ 3         B. y= -2x + 1         C.y= 4x+1         D. y= – 4x+1

Hướng dẫn giải

+ Đạo hàm của hàm số đã cho là: y’= 3x2– 2

⇒ y'(0)= -2

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm M( 0;1) là:

y- 1= -2(x-0) hay y= -2x + 1

Chọn B.

Ví dụ 2. Cho hàm số y= x2 + 2x – 6. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là 1?

A. y= 2x+1         B. y= – 6x+ 1         C. y= 4x- 7         D. y= 3x-

Hướng dẫn giải

+ Ta có: y(1) = 12+ 2.1 – 6= -3

+ Đạo hàm của hàm số đã cho là: y’(x)= 2x+ 2

⇒ y’(1) = 2.1+ 2= 4

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x= 1 là:

y+ 3= 4( x- 1) hay y= 4x- 7

Chọn C.

Ví dụ 3. Cho hàm số y= x3 + 4x + 2. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ là 2?

A. y= 4x+ 2         B. y = – 2x+ 1         C. y= 3x+ 1         D. y= 6x+ 1

Hướng dẫn giải

+ Xét phương trình: x3+ 4x+ 2= 2

⇔ x3+ 4x = 0 ⇔x= 0

+ Đạo hàm của hàm số đã cho là: y’ = 3x2 + 4

⇒ y’( 0) = 4

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ là 2:

y- 2= 4( x – 0) hay y= 4x+ 2

Chọn A.

Ví dụ 4. Cho hàm số y= – x3 + 2x2+ 2x+1 có đồ thị (C). Gọi A là giao điểm của đồ thị (C) với trục tung. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm A?

Xem thêm  30+ Tả cơn mưa lớp 5 (học sinh giỏi)

A. y= – 2x+ 1         B. y= 3x- 2         C. y= 4x+ 1         D. y= 2x+ 1

Hướng dẫn giải

+ Do A là giao điểm của đồ thị (C) với trục tung nên tọa độ điểm A( 0; 1) .

+ Đạo hàm y’= – 3x2+ 4x + 2

⇒ y’( 0) = 2

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm A là:

y- 1= 2( x- 0) hay y= 2x+ 1

chọn D.

Ví dụ 5. Cho hàm số y= x2– 3x+ 2. Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại giao điểm của đồ thị hàm số với trục hoành ?

A. y= -x+ 1 và y= x – 2         B. y= x+ 1 và y= – x+ 3

C. y= – 2x + 1 và y= x- 2         D. Đáp án khác

Hướng dẫn giải

+ Giao điểm của đồ thị hàm số đã cho với trục hoành là nghiệm phương trình :

x2– 3x+2 = 0

Vậy đồ thị của hàm số đã cho cắt trục hoành tại hai điểm là A( 1; 0) và B( 2; 0).

+ Đạo hàm của hàm số đã cho: y’= 2x- 3

+ Tại điểm A( 1; 0) ta có: y’( 1)= – 1

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại A là:

y- 0= -1( x-1) hay y= – x+ 1

+ tại điểm B( 2; 0) ta có y’( 2)= 1

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại B là :

y- 0= 1( x- 2) hay y= x- 2

Vậy có hai tiếp tuyến thỏa mãn là: y= -x+ 1 và y= x- 2

Chọn A.

Ví dụ 6. Cho hai đường thẳng d1: 2x+ y- 3= 0 và d2: x+ y – 2= 0. Gọi A là giao điểm của hai đường thẳng đã cho. Cho hàm số y= x2+ 4x+ 1 có đồ thị (C) . Viết phương trình tiếp tuyến của đồ thị (C) tại điểm A.

A. y= 3x- 5         B.y= 6x+ 1         C. y= 6x – 5         D. y= 2x+ 1

Hướng dẫn giải

+ Giao điểm của hai đường thẳng d1 và d2 là nghiệm hệ phương trình:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Vậy hai đường thẳng đã cho cắt nhau tại A( 1; 1).

+ Đạo hàm của hàm số đã cho là: y’= 2x+ 4

⇒ y’( 1) = 6.

⇒ Phương trình tiếp tuyến của đồ thị ( C) tại điểm A( 1; 1) là:

y-1= 6( x- 1) hay y= 6x- 5

Chọn C.

Ví dụ 7. Cho hàm số y =x4+ 2x2+ 1 có đồ thị ( C). Gọi d là tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ nguyên dương nhỏ nhất. Đường thẳng d song song với đường thẳng nào?

A. y= – 6x         B. y= 8x         C. y= – 10x         D. y= 12x

Hướng dẫn giải

+ Đạo hàm của hàm số đã cho là: y’= 4x3+ 4x

+ Số nguyên dương nhỏ nhất là 1. Ta viết phương trình tiếp tuyến của đồ thi (C) tại điểm có hoành độ là 1.

+ ta có; y’(1)= 8 và y(1)=4

⇒ Phương trình tiếp tuyến của đồ thị hàm số ( C) tại điểm có hoành độ là 1 là:

y- 4= 8( x- 1) hay y= 8x- 4

⇒ Đường thẳng d song song với đường thẳng y= 8x

Chọn B.

Ví dụ 8.Phương trình tiếp tuyến của đồ thị hàm số y=( x- 1)2( x- 2) tại điểm có hoành độ x= 2 là

A. y= – 2x- 1         B. y= x+ 1         C. y= 3x+ 1         D. y= x- 2

Xem thêm  Soạn bài Thần Trụ trời (trang 13) - Chân trời sáng tạo

Hướng dẫn giải

+Gọi M(x0 ; y0) là tọa độ tiếp điểm.

Từ x0=2 ⇒ y0= 0

+ Ta có : y= (x-1)2( x-2)= ( x2-2x+ 1) ( x- 2)

Hay y= x3– 4x2+ 5x- 2

⇒ Đạo hàm của hàm số đã cho là : y’= 3x2– 8x + 5

⇒ y’(2)= 1

Vậy phương trình tiếp tuyến cần tìm là :

y- 0= 1( x- 2) hay y= x- 2

chọn D.

Ví dụ 9. Cho hàm số y= (x-2)/(2x+1). Phương trình tiếp tuyến tại A( -1; 3) là

A. y= 5x+ 8         B. y= – 2x+3         C. y= 3x+ 7         D. Đáp án khác

Hướng dẫn giải

Đạo hàm của hàm số đã cho là;

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Ví dụ 10 .Cho hàm số y=2x+m+1/x-1 (C). Tìm m để tiếp tuyến của (C) tại điểm có hoành độ x0= 0 đi qua A(4; 3)

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Hướng dẫn giải

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Ví dụ 11:Cho hàm số y=1/3 x3+x2-2 có đồ thị hàm sô (C). Phương trình tiếp tuyến của (C) tại điểm có hoành độ là nghiệm của phương trình y”=0 là

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Hướng dẫn giải

Ta có y’=x2 +2x và y”=2x+2

Theo giả thiết x0 là nghiệm của phương trình

⇔2x+2=0⇔x0=-1

Và y’(-1)=-1

Phương trình tiếp tuyến tại điểm A(-1;-4/3)là: y= -1.(x+1)- 4/3

Hay y=-x-7/3

Chọn A.

Câu 1: Gọi (P) là đồ thị của hàm số y= 2x2+ 4x- 2. Phương trình tiếp tuyến của (P) tại điểm mà (P) cắt trục tung là:

A. y= 2x- 1        B. y= 3x+ 6        C. y= 4x- 2        D. y= 6x+ 3

Lời giải:

Ta có : (P) cắt trục tung tại điểm M( 0 ; -2)

Đạo hàm của hàm số đã cho : y’= 4x + 4

Hệ số góc tiếp tuyến : y’(0) = 4

Phương trình tiếp tuyến của đồ thị (P) tại M(0 ; -2) là

y+ 2= 4( x- 0) hay y= 4x – 2

chọn C.

Câu 2: Đồ thị (C) của hàm số y= (x2-2)/(x+2) cắt trục tung tại điểm A. Tiếp tuyến của (C) tại điểm A có phương trình là:

A. = 1/4 x+1        B. y= 1/2 x-1        C. y= -1/2 x-3        D. y= 2x- 1

Lời giải:

Ta có đồ thị ( C) cắt trục tung tại điểm A nên tọa độ A(0 ; -1)

Đạo hàm của hàm số đã cho là :

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Câu 3: Cho hàm số y= (2-2x)/(x+1) có đồ thị là (H). Phương trình tiếp tuyến tại giao điểm của (H) với trục hoành là:

A. y=2x+ 2        B. y= 4x- 3        C.y= -x+ 1        D. y= – 2x- 1

Lời giải:

Giao điểm của (H) với trục hoành là nghiệm hệ phương trình:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Câu 4: Gọi (C) là đồ thị hàm số y= x4 – 2x2+ 1. Có bao nhiêu tiếp tuyến của đồ thị (C) tại các giao điểm của (C) với hai trục toạ độ?

A.0       B. 1        C. 2        D. 3

Lời giải:

+ Giao điểm của đồ thị hàm số ( C) với trục hoành là nghiệm hệ phương trình:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Vậy đồ thị hàm số ( C) cắt trục hoành tại hai điểm là A(1;0) và B( -1; 0). Tương ứng với hai điểm này ta viết được hai phương trình tiếp tuyến của đồ thị hàm số.

+ giao điểm của đồ thị hàm số (C) với trục tung là nghiệm hệ phương trình

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Vậy đồ thị hàm số (C) cắt trục tung tại một điểm là C(0; 1).

Vậy có ba tiếp tuyến thỏa mãn đầu bài.

Chọn C.

Câu 5: Lập phương trình tiếp tuyến của đồ thị (C): y= 2x3– 3x+ 1 tại giao điểm của (H) với đường thẳng d: y= – x+ 1

A. y= 3x- 2 và y= – 2x+ 1        B. y= – 3x+1 và y= 3x- 2

Xem thêm  Lời bài hát Đoàn ca mới nhất

C. y=3x- 3 và y= – 2x+ 1        D. Đáp án khác

Lời giải:

+ Phương trình hoành độ giao điểm của đồ thị hàm số ( C) và đường thẳng d là:

2x3-3x + 1= – x+ 1

⇔2x3– 2x= 0 ⇔ 2x( x- 1) ( x+ 1) =0

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

+ Vậy đồ thị hàm số (C) cắt đường thẳng d tại ba điểm là A(0; 1); B( – 1; 2) và C( 1; 0)

+ Đạo hàm của hàm số: y’= 6x2– 3

+ Tại điểm A( 0; 1) ta có y’(0) = – 3

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm A là;

y- 1 = -3( x- 0) hay y= – 3x+ 1

+ Tại điểm B( -1; 2) ta có: y’(-1) = 3

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm B là:

y- 2= 3( x+ 1) hay y= 3x + 5

+ tại điểm C( 1; 0) ta có y’(1)=3.

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm C là :

y-0= 3( x- 1) hay y= 3x – 3

chọn D.

Câu 6: Cho hàm số: y=x3-(m-1)x2+(3m+1)x+m-2. Tìm m để tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 đi qua điểm ( 2; -1).

A. m= 1        B. m= – 2        C. m= 3        D. m= 0

Lời giải:

Hàm số đã cho xác định với mọi x thuộc j .

Ta có đạo hàm: y’=3x2-2(m-1)x+3m+1

Với x=1 ⇒y(1)=3m+1 ⇒y'(1)=m+6

Phương trình tiếp tuyến tại điểm x=1 là:

Tiếp tuyến này đi qua A( 2; -1) nên có: -1=m+6+3m+1 ⇒m=-2

Vậy m = -2 là giá trị cần tìm.

Chọn B.

Câu 7: Gọi (C) là đồ thị của hàm số: y= (x-1)/(x-3). Gọi M là một điểm thuộc (C) và có khoảng cách đến trục hoành là 2. Viết phương trình tiếp tuyến của ( C) tại M

A. y= (- 1)/2x + 9/2        B. y= (- 9)/2 x+ 17/2

C. Cả A và B đúng        D. Đáp án khác

Lời giải:

+ Do khoảng cách từ M đến trục hoành là 2 nên yM= 2 hoặc – 2

+ Nếu yM = 2; do điểm M thuộc đồ thị hàm số ( C) nên:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Câu 8: Cho hàm số y=x-2/x=+1. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp điểm M có tung độ bằng 4

A: y=9x+2        B: y=9x-16        C: y=9x+8        D: y=9x-2

Lời giải:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Câu 9: Cho hàm số y=x3+x2+x+1. Viết phương trình tiếp tuyến tại M thuộc đồ thị hàm số biết tung độ điểm M bằng

A: y=2x+1        B: y=x+1        C: y=x+2        D: y=x-1

Lời giải:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Gọi k là hệ số góc của tiếp tuyến tại M⇒ k=f’(0)=1

⇒phương trình tiếp tuyến tại M là:

Hay y=x+1

Chọn B.

Câu 10: Cho hàm số : y=√(1-x-x2 ) có đồ thị (C). Tìm phương trình tiếp tuyến với (C) tại điểm có hoành độ x0 =1/2 .

A: y+2x-1,5=0        B: 2x-y+1,5=0        C: -2x+y+1,5=0        D: 2x+y+1,5=0

Lời giải:

Viết phương trình tiếp tuyến của đồ thị hàm số tại 1 điểm

Bài 1. Cho hàm số y = x2 + 3x – 6. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là 2?

Bài 2. Cho hàm số y = x3 + 4x + 2. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ là 1?

Bài 3. Viết phương trình tiếp tuyến của đồ thị (C): y = -4x3 + 3x + 1 đi qua điểm A(-1; 2)

Bài 4. Cho hai đường thẳng d1: 2x+ y – 3 = 0 và d2: x+ y – 2 = 0. Gọi A là giao điểm của hai đường thẳng đã cho. Cho hàm số y = x2 + 4x + 2 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm A.

Bài 5. Viết phương trình tiếp tuyến của đồ thị hàm số y = (x – 1)2(x – 2) tại điểm có hoành độ x = 5.


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *