Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần (cực hay) – Tổng hợp các dạng bài tập Toán 12 với phương pháp giải chi tiết giúp bạn biết các làm bài tập Toán 12.-Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần (cực hay)
Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần (cực hay)
Bài viết Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần.
Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần (cực hay)
Bài giảng: Cách tìm nguyên hàm, tích phân bằng phương pháp từng phần – Cô Nguyễn Phương Anh (Giáo viên Meraki Center)
1. Định lí
Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx. Viết gọn: ∫udv = uv – ∫vdu.
2. Cách đặt
Các dạng cơ bản: Giả sử cần tính I = ∫P(x).Q(x)dx
* Thông thường nên chú ý: “Nhất log, nhì đa, tam lượng, tứ mũ”
Ví dụ 1. Tính ∫x.lnx dx.
Lời giải
Chọn A.
Ví dụ 2. Tính ∫(x – 1)exdx.
A. (x – 1)ex + ex + C.
B. xex – ex + C.
C. xex + C.
D. (x – 2)ex + C.
Lời giải
Chọn D.
Ví dụ 3. Tìm nguyên hàm của hàm số:
Lời giải
Chọn C.
Ví dụ 4. Tìm I = ∫(3x2 – x + 1)exdx.
A. I = (3x2 – 7x + 8)ex + C.
B. I = (3x2 – 7x)ex + C.
C. I = (3x2 – 7x + 8) + ex + C.
D. I = (3x2 – 7x + 3)ex + C.
Lời giải
Sử dụng phương pháp tính nguyên hàm từng phần, ta có:
Đặt u = 3x2 – x + 1 và dv = exdx
⇒ du = (6x – 1)dx và v = ex. Do đó:
I = ∫(3x2 – x + 1)exdx = (3x2 – x + 1)ex – ∫(6x – 1)exdx
Đặt u1 = 6x – 1 và dv1 = exdx ta có du1 = 6dx và v1 = ex. Do đó:
∫(6x – 1)exdx = (6x – 1)ex – 6∫exdx = (6x – 1)ex – 6ex + C.
Từ đó suy ra:
I = ∫(3x2 – x + 1)exdx = (3x2 – x + 1)ex – (6x – 7)ex + C = (3x2 – 7x + 8)ex + C.
Chọn A.
Ví dụ 5. Nguyên hàm của hàm số bằng:
Lời giải
Ta có:
Chọn C.
Ví dụ 6. Giả sử F(x) là một nguyên hàm của hàm số:
Biết F(1) = 0. Vậy F(x) bằng:
Lời giải
Ta có:
Chọn B.
Ví dụ 7. Hàm số f(x) = x.ex có các nguyên hàm là:
Lời giải
Ta có: ∫x.exdx = ∫xd(ex) = x.ex – ∫exdx = x.ex – ex + C.
Chọn D.
Ví dụ 8. Tìm nguyên hàm của hàm số f(x) = x2(3.lnx + 1).
Lời giải
Chọn C.
Ví dụ 9. Họ nguyên hàm của hàm số qua phép đặt t = √x là:
A. F(t) = 2tln2t – 4t + C.
B. F(t) = 2tln2t + 4t + C.
C. 2tlnt2 + 4t + C.
D. 2tlnt2 – 4t + C.
Lời giải
Quan sát các đáp án ta thấy D đúng, vì 2tlnt2 – 4t + C = 4tlnt – 4t + C.
Chọn D.
Ví dụ 10. Họ nguyên hàm của hàm số là:
Lời giải
Chọn C.
Ví dụ 11. Tìm nguyên hàm của các hàm số sau: ∫(1 – 2x)exdx
A. ex(2 – 3x) + C.
B. ex(3 – 3x) + C.
C. ex(3 – 2x) + C.
D. ex(2 + 3x) + C.
Lời giải
Chọn C.
Ví dụ 12. Tìm nguyên hàm của các hàm số sau ∫√x.lnx dx
Lời giải
Chọn D.
Ví dụ 13. Cho F(x) = x2 là một nguyên hàm của hàm số f(x).e2x. Tìm nguyên hàm của hàm số f'(x)e2x.
A. ∫f'(x)e2xdx = -x2 + 2x + C.
B. ∫f'(x)e2xdx = -x2 + x + C.
C. ∫f'(x)e2xdx = 2x2 – 2x + C.
D. ∫f'(x)e2xdx = -2x2 + 2x + C.
Lời giải
Từ giả thiết ⇒ F'(x) = f(x).e2x ⇔ (x2)’ = f(x).e2x ⇔ 2x = f(x).e2x (1)
Đặt A = ∫f'(x).e2xdx.
Đặt u = e2x ⇒ du = 2.e2xdx, dv = f’(x)dx. Chọn v = f(x)
⇒ A = e2x.f(x) – 2∫f(x).e2xdx = 2x – 2F(x) + C = -2x2 + 2x + C.
Chọn D.
Ví dụ 14. Cho F(x) = (x – 1).ex là một nguyên hàm của hàm số f(x).e2x. Tìm nguyên hàm của hàm số f'(x).e2x.
Lời giải
Chọn C.
Ví dụ 15. Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số f'(x)lnx.
Lời giải
Chọn C.
Câu 1: Tìm nguyên hàm của các hàm số sau ∫(2x + 3)e-xdx
A. -e-x(2x – 1) + C.
B. -e-x(2x + 1) + C.
C. -e-x(2x + 5) + C.
D. Đáp án khác.
Lời giải:
Chọn C.
Câu 2: Tính ∫x.2xdx bằng:
Lời giải:
Chọn A.
Câu 3: Tính ∫lnxdx bằng:
Lời giải:
Chọn D.
Câu 4: Tính ∫2xln(x – 1)dx bằng:
Lời giải:
Chọn C.
Câu 5: Nguyên hàm I = ∫xln(x + 1)dx bằng:
Lời giải:
Chọn A.
Câu 6: Gọi F(x) là một nguyên hàm của hàm số f(x) = x + ln(x + 1). Biết F(0) = 1, vậy F(x) bằng:
Lời giải:
Chọn A.
Câu 7: Tìm nguyên hàm của hàm số f(x) = (x2 – 1)ex
Lời giải:
Cách khác: Đối với nguyên hàm từng phần dạng:
∫f(x).exdx = f(x).ex – f'(x).ex + f”(x).ex – … + f(k).ex + C.
∫(x2 – 1)exdx = (x2 – 1)ex – 2xex + 2ex + C = (x2 – 2x + 1).ex + C.
Chọn A.
Câu 8: Tìm nguyên hàm H của hàm số f(x) = (3x2 + 1)lnx
Lời giải:
Chọn A.
Câu 9: Tìm nguyên hàm H của hàm số f(x) = √x.lnx
Lời giải:
Chọn C.
Câu 10: Tìm nguyên hàm của hàm số sau: ∫x.lnxdx
Lời giải:
Chọn B.
Câu 11: Hàm số y = f(x) có đạo hàm f'(x) = x3.ex2 và f(0) = 0. Chọn kết quả đúng:
Lời giải:
Chọn A.
Câu 12: Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số f'(x)lnx.
Lời giải:
Chọn A.
Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh – Cô Nguyễn Phương Anh (Giáo viên Meraki Center)
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn