Cách tìm điều kiện để biểu thức logarit xác định hay nhất – Tổng hợp các dạng bài tập Toán 12 với phương pháp giải chi tiết giúp bạn biết các làm bài tập Toán 12.-Cách tìm điều kiện để biểu thức logarit xác định hay nhất
Cách tìm điều kiện để biểu thức logarit xác định hay nhất
Bài viết Cách tìm điều kiện để biểu thức logarit xác định với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách tìm điều kiện để biểu thức logarit xác định.
Cách tìm điều kiện để biểu thức logarit xác định hay nhất
Bài giảng: Tất tần tật về Logarit – Cô Nguyễn Phương Anh (Giáo viên Meraki Center)
1. Phương pháp giải
* Để biểu thức logaf(x) xác định thì cần :
+ Cơ số a > 0 và a ≠ 1
+ f(x) > 0
* Chú ý : Xét tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) có Δ = b2 − 4ac.
• Nếu Δ < 0 thì f(x) luôn cùng dấu với hệ số a.
• Nếu Δ > 0 thì phương trình f(x)= 0 có hai nghiệm x1 ; x2.
+ Trường hợp 1 : a > 0 thì f(x) > 0 khi x ∈ (−∞; x1) ∪ (x2; +∞) và f(x) < 0 khi x ∈ (x1; x2)
+ Trường hợp 2. a < 0 thì f(x) < 0 khi x ∈ (−∞; x1) ∪ (x2; +∞) và f(x)> 0 khi x ∈ (x1; x2)
2. Ví dụ minh họa
Ví dụ 1. Với giá trị nào của x thì biểu thức log2(4x − 2) xác định ?
Lời giải:
Đáp án: A
Điều kiện để biểu thức log2(4x − 2) xác định là:
Ví dụ 2. Tìm tập xác định của biểu thức
A. D = (2; +∞) B. D = [0; +∞)
C. D = [0; +∞){2} D. (0; +∞){2}
Lời giải:
Đáp án: C
Biểu thức đã cho xác định
Vậy tập xác định của biểu thức là D = [0; +∞){2} .
Ví dụ 3. Với giá trị nào của x thì biểu thức C = ln (x2 − 5x +6) xác định?
A. x ∈ (−∞; 2)∪(3; +∞) B. x ∈ [2; 3]. C. x ∈ R(2; 3) D. x ∈ R{2;3}
Lời giải:
Đáp án: A
Điều kiện xác định: x2 − 5x + 6 > 0
⇔ x ∈ (−∞; 2)∪(3; +∞)
Ví dụ 4. Với giá trị nào của x thì biểu thức: f(x) = log7 ( x3 − 3x + 2 ) xác định?
Lời giải:
Đáp án: D
Biểu thức có nghĩa khi và chỉ khi:
Ví dụ 5. Điều kiện xác định của biểu thức là
A. x < 1 hoặc x > 3 B. x > 3
C. −1 < x < 1 D. x > 1
Lời giải:
Đáp án: C
Biểu thức có nghĩa khi và chỉ khi:
(1 − x2).(x2 − 6x + 9) > 0 ⇔ (1 − x2).(x − 3)2 > 0
Ví dụ 6. Với giá trị nào của m thì biểu thức f(x) = log√5(x − m) xác định với mọi x ∈ (−3; +∞)?
A. m > −3 B. m < −3 C. m ≤ −3. D. m ≥ −3.
Lời giải:
Đáp án: C
Biểu thức f(x) xác định khi và chỉ khi: x − m > 0 ⇔ x > m.
Để f(x) xác định với mọi x ∈ (−3; +∞) thì m ≤ −3
Ví dụ 7. Biểu thức lg(x2 − 2mx + 4) có nghĩa với mọi x ∈ R khi
Lời giải:
Đáp án: B
Biểu thức lg(x2 − 2mx + 4) có nghĩa với mọi số thực x khi và chỉ khi :
x2 − 2mx+ 4 > 0 với mọi x.
Ví dụ 8. Biểu thức A= log2 (ax2 − 4x + 1) có nghĩa với mọi x ∈ R khi
A. 0 < a < 4 B. a > 0 C. a > 4 D. a ∈ ∅ .
Lời giải:
Đáp án: A
Biểu thức A= log2(ax2 − 4x + 1) có nghĩa với mọi x ∈ R ⇔ ax2 − 4x + 1 > 0, ∀x ∈ R.
Ví dụ 9. Với giá trị nào của m thì biểu thức f(x) =124 + 113log2(3x + m) xác định với mọi x ∈ (3; +∞)?
A. m > −3 B. m > −9 C. m < −9 D. m < −3
Lời giải:
Đáp án: A
Biểu thức f(x) xác định khi và chỉ khi
Để f(x) xác định với mọi x ∈ (3; +∞) thì
Bài giảng: Các bài toán thực tế – Ứng dụng hàm số mũ và logarit – Cô Nguyễn Phương Anh (Giáo viên Meraki Center)
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn