Cách viết phương trình tiếp tuyến của đồ thị hàm số (cực hay)

Cách viết phương trình tiếp tuyến của đồ thị hàm số (cực hay) – Tổng hợp các dạng bài tập Toán 12 với phương pháp giải chi tiết giúp bạn biết các làm bài tập Toán 12.-Cách viết phương trình tiếp tuyến của đồ thị hàm số (cực hay)

Cách viết phương trình tiếp tuyến của đồ thị hàm số (cực hay)



Bài viết Cách viết phương trình tiếp tuyến của đồ thị hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách viết phương trình tiếp tuyến của đồ thị hàm số.

Cách viết phương trình tiếp tuyến của đồ thị hàm số (cực hay)

Bài giảng: Cách viết phương trình tiếp tuyến của đồ thị hàm số – Cô Nguyễn Phương Anh (Giáo viên VietJack)

1. Ý nghĩa hình học của đạo hàm

Cho hàm số y = f(x) có đồ thị (C) và điểm. M0 (x0; y0) ∈ (C)

Tiếp tuyến của đồ thị (C) tại điểm M0 có dạng y = f'(x0 )(x – x0 ) + y0

Trong đó:

 Điểm M0 (x0; y0) ∈(C) được gọi là tiếp điểm ( với y0 = f(x0)).

 k = f’x0) là hệ số góc của tiếp tuyến.

Chú ý:

 Đường thẳng bất kỳ đi qua M0 (x0; y0) có hệ số góc k, có phương trình

y = k(x – x0 ) + y0

 Cho hai đường thẳng Δ1:y = k1 x + m1 và Δ2:y = k2 x + m2

Lúc đó: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2. Điều kiện tiếp xúc của hai đồ thị

Cho hai hàm số y = f(x),(C) và y = g(x),(C’)

(C) và (C’ ) tiếp xúc nhau khi chỉ khi hệ phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảicó nghiệm.

Nghiệm của hệ là hoành độ tiếp điểm của hai đồ thị đó.

Đặc biệt: Đường thẳng y = kx + m là tiếp tuyến với (C):y = f(x) khi chỉ khi hệ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảicó nghiệm.

3. Các dạng phương trình tiếp tuyến thường gặp

Cho hàm số y = f(x) gọi đồ thị của hàm số là (C)

Dạng 1. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) tại M0 (x0; y0)

Phương pháp

Bước 1. Tính y’ = f’ (x) suy ra hệ số góc của phương trình tiếp tuyến là k = y’ (x0).

Bước 2. Phương trình tiếp tuyến của đồ thị (C) tại điểm M0 (x0; y0) có dạng

y – y0 = f'(x0)(x – x0)

Dạng 2. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) có hệ số góc k cho trước.

Phương pháp

Bước 1. Gọi M0 (x0; y0) là tiếp điểm và tính y’ = f’ (x).

Bước 2. Hệ số góc tiếp tuyến là k = f’ (x0). . Giải phương trình này tìm được x0 thay vào hàm số được y0.

Bước 3. Với mỗi tiếp điểm ta tìm được các tiếp tuyến tương ứng

d: y – y0 = f’ (x0)(x – x0)

Chú ý: Đề bài thường cho hệ số góc tiếp tuyến dưới các dạng sau:

Tiếp tuyến d Δ:y = ax + b ⇒ hệ số góc của tiếp tuyến là k = a

Xem thêm  Công thức xác định đường tiệm cận của đồ thị hàm số - Toán lớp 12

Tiếp tuyến d Δ:y = ax + b(a ≠ 0)⇒ hệ số góc của tiếp tuyến là k = -1/a

Tiếp tuyến tạo với trục hoành một góc α thì hệ số góc của tiếp tuyến d là k = ±tan⁡α

Dạng 3. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) biết tiếp tuyến đi qua điểm A(xA; yA)

Phương pháp

Cách 1.

Bước 1: Phương trình tiếp tuyến đi qua A(xA; yA) hệ số góc k có dạng

d:y = k(x – xA ) + yA (*)

Bước 2: là tiếp tuyến của khi và chỉ khi hệ sau có nghiệm:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bước 3: Giải hệ này tìm được x suy ra k và thế vào phương trình (*), ta được tiếp tuyến cần tìm.

Cách 2.

Bước 1. Gọi M(x0; f(x0 )) là tiếp điểm và tính hệ số góc tiếp tuyến

k = y'(x0 ) = f’ (x0) theo x0

Bước 2. Phương trình tiếp tuyến có dạng d = y'(x0 )(x – x0 ) + y0 (**). Do điểm A(xA; yA) ∈ d nên yA = y'(x0 )(xA – x0 ) + y0 giải phương trình này ta tìm được x0 .

Bước 3. Thế x0 vào (**) ta được tiếp tuyến cần tìm.

Ví dụ 1: Cho hàm số (C):y = x3 + 3x2. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4).

Hướng dẫn

Ta có y’ = 3x2 + 6x; y'(1) = 9

Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4) là:

y = 9(x – 1) + 4 = 9x – 5

Ví dụ 2: Cho hàm số (C):y = 4x3 – 6x2 + 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm A(-1; -9).

Hướng dẫn

Ta có y’ = 12x2 – 12x

Gọi M(x0, y0) là tọa độ tiếp điểm

Phương trình tiếp tuyến của (C) tại điểm M có dạng:

y = (12x02 – 12x0> )(x – x0 ) + 4x03 – 6x02 + 1

Vì tiếp tuyến đi qua điểm A(-1; -9) nên ta có:

-9 = (12x02 – 12x0 )( -1 – x0 ) + 4x03 – 6x03 + 1

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải .

Khi đó phương trình tiếp tuyến cần tìm là y = 15/4 (x – 5/4) – 9/16 = 15/4 x – 21/4

Với x0 = -1 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Khi đó phương trình tiếp tuyến cần tìm là y = 24(x + 1) – 9 = 24x + 15

Ví dụ 3: Cho hàm số (C):Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng có phương trình Δ:3x – y + 2 = 0

Hướng dẫn

ĐKXĐ: x ≠ -2. Ta có y’ = 3/(x + 2)2 .

Phương trình Δ:3x – y + 2 = 0 hay Δ:y = 3x + 2

Gọi tọa độ tiếp điểm là M(x0, y0)

Vì tiếp tuyến song song với đường thẳng có phương trình Δ:3x – y + 2 = 0 nên ta có

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với x0 = -1 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 1) – 1 = 3x + 2 (loại).

Với x0 = -3 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 3) + 5 = 3x + 14 (thỏa mãn)

Câu 1: Cho hàm số y = -2x3 + 6x2 – 5. Viết phương trình tiếp tuyến của (C) tại điểm M có hoành độ bằng 3.

Xem thêm  Đồ thị hàm số: hàm số bậc ba, hàm số bậc bốn trùng phương, hàm số phân thức, hàm số chứa dấu giá trị tuyệt đối

Lời giải:

Ta có y’ = -6x2 + 12x; y’ (3) = -18; y(3) = -5

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 3 là

y = -18(x – 3) – 5 = -18x + 49

Câu 2: Cho hàm số (C):y = 1/4x4 – 2x2. Viết phương trình tiếp tuyến của (C) tại điểm M có hoành độ x0 > 0 biết rằng y” (x0 )= -1.

Lời giải:

Ta có y’ = x3 – 4x; y” = 3x2 – 4

Vì y” (x0 ) = -1 ⇒ 3x02 – 4 = -1 ⇒ x02 = 1 ⇒ x0 = 1 (Vì x0 > 0)

Với x0 = 1 ⇒ y0 = -7/4 ; y0‘ = -3. Khi đó phương trình tiếp tuyến tại điểm M là:

y = -3(x – 1) – 7/4 = -3x + 5/4

Câu 3: Gọi d là tiếp tuyến của đồ thị hàm số (C):y =(x – 5)/(-x + 1) tại điểm A của (C) và trục hoành. Viết phương trình của d.

Lời giải:

Hoành độ giao điểm của (C) và trục hoành là nghiệm của phương trình

(x – 5)/(-x + 1) = 0 ⇒ x = 5

Khi đó tọa độ điểm A = (5; 0)

ĐKXĐ x ≠ 1. Ta có y’= (-4)/(-x + 1)2 ; y'(5) = -1/4

Phương trình đường thẳng d chính là phương trình tiếp tuyến tại điểm A(5;0) có dạng

y = -1/4 (x – 5) = -1/4 x + 5 /4

Câu 4: Cho đồ thị hàm số y = 3x – 4x2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm A(1; 3).

Lời giải:

Ta có y’ = 3 – 8x

Gọi M(x0 , y0) là tọa độ tiếp điểm

Phương trình tiếp tuyến của (C) tại điểm M có dạng:

y = (3 – 8x0 )(x – x0 ) + 3x0 – 4x02

Vì tiếp tuyến đi qua điểm A(1; 3) nên ta có:

3 = (3 – 8x0 )(1 – x0 ) + 3x0 – 4x02

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với x0 = 0 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải .

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x – 0) + 0 = 3x

Với x0 = 2 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải .

Khi đó phương trình tiếp tuyến cần tìm là y = -13(x – 2) – 10 = -13x + 16

Câu 5: Cho hàm số y = x3 – 3x2 + 6x + 1 có đồ thị (C). Viết phương trình tiếp tuyến có hệ số góc nhỏ nhất.

Lời giải:

Gọi M(x0,y0) là tọa độ tiếp điểm.

Ta có y’ = 3x2 – 6x + 6

Khi đó y’ (x0 )=3x02 – 6x0 + 6 = 3(x02 – 2x0 + 2) = 3[(x0 – 1)2 + 1] ≥ 3

Vậy hệ số góc nhỏ nhất của tiếp tuyến là y’ (x0) = 3, dấu bằng xảy ra khi x0 = 1

Với x0 = 1 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x – 1) + 5 = 3x + 2

Câu 6: Cho hàm số (C):y = x3 – 3x + 2. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó có hệ số góc bằng 9.

Lời giải:

Gọi M(x0, y0) là tọa độ tiếp điểm.

Ta có y’ = 3x2 – 3

Khi đó y'(x0 ) = 3x02 – 3 = 9 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với x0 = 2 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = 9(x – 2) + 4 = 9x – 14

Với x0 = -2 thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Khi đó phương trình tiếp tuyến cần tìm là y = 9(x + 2) + 0 = 9x + 18

Xem thêm  Nêu khái niệm Sử học

Câu 7: Cho hàm số y = (-x + 5)/(x + 2) có đồ thị là (C). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó song song với đường thẳng d:y = -1/7 x + 5/7

Lời giải:

ĐKXĐ: x ≠ -2. Ta có y’ = (-7)/(x + 2)2 .

Gọi tọa độ tiếp điểm là M(x0, y0)

Vì tiếp tuyến song song với đường thẳng có phương trình d:y = -1/7 x + 5/7 nên ta có

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = -1/7 (x – 5) + 0 = -1/7 x + 5/7 (loại).

Với x0 = -9 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = -1/7 (x + 9) – 2 = -1/7 x – 23/7 (thỏa mãn).

Câu 8: Viết phương trình tiếp tuyến của đồ thị hàm số y = -x4 – 2x2 + 3 vuông góc với đường thẳng Δ: x – 8y + 2017 = 0

Lời giải:

Ta có y’= -4x3 – 4x.

Gọi tọa độ tiếp điểm là M(x0, y0)

Phương trình Δ:x – 8y + 2017 = 0 hay Δ: y = 1/8 x + 2017/8

Vì tiếp tuyến vuông góc với đường thẳng có phương trình d:y = 1/8 x + 2017/8 nên ta có

y'(x0 ) = -8 hay -4x03 – 4x0 = -8 ⇔ x0 = 1

Với Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó phương trình tiếp tuyến cần tìm là y = -8(x – 1) + 0 = -8x + 8 (thỏa mãn).

Câu 9: Viết phương trình tiếp tuyến của đồ thị hàm số y = 1/3 x3 + 1/2 x2 – 2x + 1 và tiếp tuyến tạo với đường thẳng d:x + 3y – 1 = 0 một góc 450.

Lời giải:

Gọi tọa độ tiếp điểm là M(x0, y0).

Có y’ = x2 + x – 2

Phương trình đường thẳng d: x + 3y – 1 = 0 ⇔ y = -1/3 x + 1/3

Vì tiếp tuyến tạo với đường thẳng d: x + 3y – 1 = 0 một góc 450 nên ta có

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Phương trình tiếp tuyến cần tìm là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Phương trình tiếp tuyến cần tìm là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

x0 = 0 ⇒ y(x0 )= 1. Phương trình tiếp tuyến cần tìm là:

y = -2(x – 0) + 1 = -2x + 1

x0 = -1 ⇒ y(x0 ) = 19/6. Phương trình tiếp tuyến cần tìm là:

y = -2(x + 1) + 19/6 = -2x + 7/6

Vậy các phương trình tiếp tuyến cần tìm là: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải;

y = -2x + 1; y = -2x + 7/6

Bài 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = x−1x+1 có hệ số góc bằng 2.

Bài 2. Cho hàm số y = f(x) = −x33 + 2x2 – 3x (C). Viết phương trình tiếp tuyến của (C) tại điểm trên (C) có hoành đọ x0, biết f'(x0) = 6.

Bài 3. Viết phương trình tiếp tuyến của đồ thị hàm số y = x4 + 2x2 – 3 tại điểm H có tung độ bằng 21.

Bài 4. Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 – 2x + 3 tại điểm A(1; 2).

Bài 5. Cho hàm số y = x3 − 6x2 + 9x có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng d: y = 9x

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:


tiep-tuyen.jsp


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *