Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay)

Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay) – Chuyên đề Toán 9 tổng hợp phương pháp giải các dạng bài tập Toán 9 hay, chi tiết giúp bạn học tốt Toán 9.-Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay)

Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay)



Bài viết Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông.

Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay)

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Cho ΔABC, góc A bằng 900, AH ⊥ BC, AB = c, AC = b, BC = a, AH = h thì:

        + BH = c’ được gọi là hình chiếu của AB xuống BC

        + CH = b’ được gọi là hình chiếu của AC xuống BC

    Khi đó, ta có:

    1) AB2 = BH.BC hay c2 = a.c’

    AC2 = CH.BC hay b2 = a.b’

    2) AH2 = CH.BH hay h2 = b’.c’

    3) AB.AC = AH.BC hay b.c = a.h

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    5) AB2 + AC2 = BC2 hay b2 + c2 = a2 (Định lý Pytago)

Ví dụ 1: Cho tam giác ABC vuông tại A, AB < AC. Biết AH = 6 cm, HC – HB = 3,5 cm. Tính độ dài AB, AC

Xem thêm  Bài 1 trang 41 Toán 9 Tập 1 Chân trời sáng tạo

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Ta có: AH2 = BH.CH ⇒ BH.CH = 36

    Mặt khác: CH – BH = 3,5 (1)

    ⇒ (CH – BH)2 = 3,52 = 12,25

    Ta có: (CH + BH)2 = (CH – BH)2 + 4BH.CH = 12,25 + 4.36 = 156,25

    ⇒ CH + BH = √156,25 = 12,5 (2)

    Từ (1) và (2) ⇒ CH = 8; BH = 4,5

    Ta có: AB2 = BH.BC = 4,5.12,5 = 56,25 ⇒ AB = 7,5 (cm)

    AC2 = CH.BC = 8.12,5 = 100 ⇒ AB = 10 (cm)

Ví dụ 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E là hình chiếu của H trên AB và AC. Đặt BC = a; CA = b; AB = c; AH = h; BD = x; CE = y. Chứng minh rằng:

    a) a2x = c3; a2y = b3

    b) axy = h3

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Đặt BH = c’; CH = b’

    Xét ΔBDH và ΔBAC có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇒ a.x = c.c’

    ⇒ a.a.x = a.c.c’ hay a2x = a.c.c’

    Mặt khác a.c’ = c2 nên a2x = c.c2 ⇒ a2x = c3

    Chứng minh tương tự, ta được a2y = b3

    b) Ta có: a2x.a2y = c3.b3

    Lại có: b.c = a.h nên a4.xy = a3h3

    ⇒ a.xy = h3

Ví dụ 3: Cho điểm A nằm ngoài đường thẳng xy và cách đường thẳng xy là 3 cm. Gọi M là điểm di động trên xy. Vẽ tam giác ABC vuông tại A sao cho AM là đường cao của tam giác đó. Tính giá trị nhỏ nhất của tích MB.MC

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Gọi H là hình chiếu của A trên xy, H là điểm cố định và AH = 3cm

    Ta có: AM ≥ AH ( dấu bằng xảy ra khi M trùng H)

Xem thêm  Bài 3.29 trang 64 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

    Xét tam giác ABC vuông tại A có AM là đường cao nên :

    MB.MC = AM2 ≥ AH2 = 32 = 9

    Do đó, tích MB. MC đạt giá trị nhỏ nhất là 9 khi M trùng H

Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:


chuong-1-he-thuc-luong-trong-tam-giac-vuong.jsp


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *