Cách giải phương trình lượng giác cơ bản cực hay – Phương pháp giải các dạng bài tập Toán 11 chi tiết giúp học sinh biết cách làm bài tập Toán 11.-Cách giải phương trình lượng giác cơ bản
Cách giải phương trình lượng giác cơ bản
Bài viết Cách giải phương trình lượng giác cơ bản với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách giải phương trình lượng giác cơ bản.
Cách giải phương trình lượng giác cơ bản
– Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π – arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:
– Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:
– Phương trình tanx = a (3)
Điều kiện:
Nếu α thỏa mãn điều kiện và tanα = a thì ta viết α = arctan a.
Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
– Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Bài 2: Giải các phương trình lượng giác sau:
a) cos2 x – sin2x =0.
b) 2sin(2x – 40º) = √3
Bài 3: Giải các phương trình lượng giác sau:
Đáp án và hướng dẫn giải
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sinπ/6
b)
c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x
Bài 2: Giải các phương trình lượng giác sau:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx – 2 sinx )=0
b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2
Bài 3: Giải các phương trình lượng giác sau:
a) sin(2x+1)=cos(3x+2)
b)
⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)
Bài 1: Giải các phương trình sau
a) cos(3x + π) = 0
b) cos (π/2 – x) = sin2x
Lời giải:
Bài 2: Giải các phương trình sau
a) sinx.cosx = 1
b) cos2 x – sin2 x + 1 = 0
Lời giải:
Bài 3: Giải các phương trình sau
a) cos2 x – 3cosx + 2 = 0
b) 1/(cos2 x) – 2 = 0.
Lời giải:
Bài 4: Giải các phương trình sau: (√3-1)sinx = 2sin2x.
Lời giải:
Bài 5: Giải các phương trình sau: (√3-1)sinx + (√3+1)cosx = 2√2 sin2x
Lời giải:
Bài 1. Giải các phương trình lượng giác sau:
a) cos2 x – sin2x = 0.
b) 2sin(2x – 40º) = 3.
Bài 2. Giải các phương trình lượng giác sau:
a) sinx = sinπ6.
b) cotx = tan2x.
c) tanx = 1.
Bài 3. Giải các phương trình lượng giác sau:
a) 3−1sinx = 2sin2x.
b) 3−1sinx + 3−1cosx = 22sin2x.
Bài 4. Giải các phương trình lượng giác sau:
a) sin(2x + 1) = cos(3x + 2).
b) sinx.cosx = 1.
c) cos2x – sin2x + 1 = 0.
d) 1cos2x−2=0.
Bài 5. Giải các phương trình lượng giác sau:
a) 23cos2x + 6sinxcosx = 3 + 3.
b) sinx + cosx – 2sinx.cosx + 1 = 0.
c) 3cos2x + 3cot2x + 4(tanx + cotx) – 1 = 0.
d) 6sin2x + 14sinxcosx – 4(1 + cos2x) = 6.
Bài 6. Giải phương trình: 2sin(x + 30°) + 3 = 0.
Bài 7. Giải phương trình: sinx = −32
Bài 8. Giải phương trình: sin2x – 3sinx + 2 = 0.
Bài 9. Giải phương trình: 2sin2x – sinx = 0.
Bài 10. Giải các phương trình sau:
a) 2sin2x + 2sin4x = 0;
b) sin2x + sin2x – 2cos2x + 5cos2x = 2.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn