Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án)

Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án) – Tổng hợp các dạng bài tập Toán 8 với phương pháp giải chi tiết giúp bạn biết cách làm bài tập Toán 8.-Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án)

Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án)

Bài viết Cách xác định số nghiệm của một phương trình với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập
Cách xác định số nghiệm của một phương trình.

Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án)

– Lưu ý về số nghiệm của một phương trình: Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm, .., vô số nghiệm hoặc có thể không có nghiệm nào. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

– Phương pháp giải:

 Phương trình A(x) = B(x) vô nghiệm ⇔ A(x) ≠ B(x) với ∀ x.

 Phương trình A(x) = B(x) có nghiệm x = x0 ⇔ A(x0) = B(x0) .

 Phương trình A(x) = B(x) có vô số nghiệm ⇔ A(x) = B(x) với ∀ x.

Ví dụ 1: Chứng tỏ phương trình 2x – 3 = 2(x – 3) vô nghiệm

Lời giải:

Ta có:

2x – 3 = 2(x – 3)

⇔ 2x – 3 = 2x – 6

⇔ 2x – 2x = 3 – 6

⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm

Xem thêm  Cách giải bài toán bằng cách lập phương trình cực hay: Bài toán tìm số tự nhiên

Ví dụ 2: Chứng tỏ phương trình 4(x – 2) – 3x = x – 8 có vô số nghiệm

Lời giải:

Ta có:

4(x – 2) – 3x = x – 8

⇔ 4x – 8 – 3x = x – 8

⇔ x – 8 = x – 8 (thỏa mãn với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

Ví dụ 3: Chứng tỏ phương trình (x – 1)(x + 2)(3 – x) = 0 có nhiều hơn một nghiệm.

Lời giải:

(x – 1)(x + 2)(3 – x) = 0

⇔ x – 1 = 0 hoặc x + 2 = 0 hoặc 3 – x = 0

⇔ x = 1 hoặc x = -2 hoặc x = 3.

có 3 giá trị x = 1, x = -2, x = 3 đều thỏa mãn phương trình.

Vậy phương trình trên có nhiều hơn 1 nghiệm.

Bài 1: Số nghiệm của phương trình x2 – 4x + 6 = 0 là:

 A. Vô số nghiệm.

 B. 1 nghiệm.

 C. 2 nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: D

Ta có x2 – 4x + 6 = x2 – 4x + 4 + 2 =(x – 2)2 + 2 ≥ 2 với mọi x.

Vậy phương trình x2 – 4x + 6 = 0 vô nghiệm

Bài 2: Phương trình 2(x – 1) = 2x – 2 có số nghiệm là:

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: C

Ta có VT = 2(x – 1) = 2x – 2 = VP (với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

Bài 3: Phương trình 4(x – 3) + 16 = 4(1 + 4x) có số nghiệm là:

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: A

Ta có:

4(x – 3) + 16 = 4(1 + 4x)

⇔ 4x – 12 + 16 = 4 + 16x

⇔ 4x + 4 = 16x + 4

Xem thêm  Ag + HNO3 đặc → AgNO3 + NO2 + H2O | Ag + HNO3 ra NO2

⇔ 4x = 16x

⇔ x = 0

Vậy phương trình đã cho có 1 nghiệm x = 0.

Bài 4: Phương trình │x – 2│ = -2 có số nghiệm là:

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: D

Ta có │x – 2│ ≥ 0 với mọi x.

Vậy phương trình │x – 2│ = – 2 vô nghiệm.

Bài 5: Số nghiệm của phương trình x2 – 3x = 0 là:

 A. Vô số nghiệm.

 B. một nghiệm.

 C. hai nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: C

Ta có x2 – 3x = 0 ⇔ x(x – 3) = 0 ⇔ x = 0 hoặc x = 3

Vậy phương trình x2 – 3x = 0 có hai nghiệm.

Bài 6: Chứng tỏ phương trình 2x + 5 = 4(x – 1) – 2(x – 3) vô nghiệm.

Lời giải:

Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm.

Bài 7: Chứng tỏ phương trình x2 – 8x + 18 = 0 vô nghiệm.

Lời giải:

Ta có x2 – 8x + 18 = x2 – 8x + 16 +2 = (x – 4)2 + 2 ≥ 2 với mọi x

Vậy phương trình x2 – 8x + 18 = 0 vô nghiệm.

Bài 8: Chứng tỏ phương trình (x2 – 1) = 0 có nhiều hơn một nghiệm.

Lời giải:

Ta có: (x2 – 1) = 0 ⇔ (x – 1)(x + 1) = 0 ⇔ x = 1 hoặc x = -1.

Có hai giá trị x = -1, x = 1 đều thỏa mãn phương trình.

Vậy phương trình có nhiều hơn 1 nghiệm.

Bài 9: Chứng tỏ phương trình │x + 1│ = – 3 vô nghiệm.

Lời giải:

ta có │x + 1│ ≥ 0 với mọi x. Vậy phương trình │x + 1│ = -3 vô nghiệm.

Xem thêm  Động từ bất qui tắc Leave trong tiếng Anh

Bài 10: Chứng tỏ phương trình (x2 + 1) = -x2 + 6x – 9 vô nghiệm.

Lời giải:

Ta có (x2 + 1) = -x2 + 6x – 9 ⇔ x2 + 1 + (x2 – 6x + 9) = 0 ⇔ x2 + (x – 3)2 + 1 = 0

Vì x2 ≥ 0, (x – 3)2 ≥ 0 với mọi x nên x2 + (x – 3)2 + 1 ≥ 1 vơi mọi giá trị của x

Vậy phương trình đã cho vô nghiệm.

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc, có đáp án hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *