Chứng minh: (x + 1)(x^2 – x + 1) = x^3 – 1

Chứng minh: (x + 1)(x^2 – x + 1) = x^3 – 1 – Tuyển chọn giải sách bài tập Toán lớp 7 Cánh diều Tập 1, Tập 2 hay nhất, chi tiết giúp bạn dễ dàng làm bài tập trong SBT Toán 7.-Chứng minh: (x + 1)(x^2 – x + 1) = x^3 – 1

Chứng minh: (x + 1)(x^2 – x + 1) = x^3 – 1

Giải sách bài tập Toán lớp 7 Bài 4: Phép nhân đa thức một biến

Bài 34 trang 50 sách bài tập Toán lớp 7 Tập 2: Chứng minh:

a) (x + 1)(x2 – x + 1) = x3 – 1.

b) (x3 + x2 + x + 1)(x – 1) = x4 – 1.

c) (x + a)(x + b) = x2 + (a + b)x + ab (với a, b là số thực).

Lời giải:

a) (x + 1)(x2 – x + 1)

= x . (x2 – x + 1) + 1 . (x2 – x + 1)

= x . x2 – x . x + x . 1 + x2 – x + 1

= x3 – x2 + x + x2 – x + 1

= x3 + (– x2 + x2) + (x – x) + 1

= x3 – 1.

Vậy (x + 1)(x2 – x + 1) = x3 – 1.

b) (x3 + x2 + x + 1)(x – 1)

= x3 . (x – 1) + x2 . (x – 1) + x . (x – 1) + 1. (x – 1)

= x3 . x – x3 . 1 + x2 . x – x2 . 1 + x . x – x . 1 + x – 1

= x4 – x3 + x3 – x2 + x2 – x + x – 1

= x4 + (– x3 + x3) + (– x2 + x2) + (– x + x) – 1

= x4 – 1.

Vậy (x3 + x2 + x + 1)(x – 1) = x4 – 1.

c) (x + a)(x + b)

= x . (x + b) + a . (x + b)

= x . x + x . b + a . x + ab

= x2 + (bx + ax) + ab

= x2 + (a + b)x + ab.

Vậy (x + a)(x + b) = x2 + (a + b)x + ab (với a, b là số thực).

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Xem thêm  Hình lập phương có bao nhiêu đường chéo?

Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *