Dạng bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên cực hay | Chuyên đề Toán 9 – Bộ chuyên đề Toán lớp 9: Đại số và Hình học gồm các dạng bài tập cơ bản và nâng cao có lời giải chi tiết được biên soạn theo chương trình sgk Toán 9 giúp bạn học tốt môn Toán lớp 9.-Dạng bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên cực hay
Dạng bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên cực hay
Cách giải bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh
ôn tập, biết cách làm bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên.
Dạng bài tập Tìm giá trị của biến để biểu thức có giá trị nguyên cực hay
a) Tìm x nguyên để biểu thức A = nguyên.
Bước 1. Tách A thành dạng
trong đó h(x) là một biểu thức nguyên khi x nguyên, m là nguyên.
Bước 2: A nguyên ⇔ nguyên ⇔ g(x) ∈ Ư(m).
Bước 3. Với mỗi giá trị của g(x), tìm x tương ứng và kết luận.
b) Tìm x để biểu thức A nguyên (Sử dụng phương pháp kẹp).
Bước 1: Áp dụng các bất đẳng thức để tìm hai số m, M sao cho m < A < M.
Bước 2: Tìm các giá trị nguyên trong khoảng từ m đến M.
Với mỗi trường hợp, tìm giá trị của x và kết luận.
Lưu ý: Đối chiếu điều kiện xác định của biểu thức.
Ví dụ 1: Với giá trị nguyên nào của x thì biểu thức cũng đạt giá trị nguyên?
Hướng dẫn giải:
Điều kiện xác định: x ≥ 0; x ≠ 1 .
Ta có:
⇔ √x – 1 ∈ Ư(2) = {-2; -1; 1; 2}
Ta có bảng sau:
Vậy với x ∈ {0; 4; 9} thì biểu thức A đạt giá trị nguyên.
Ví dụ 2: Tìm giá trị nguyên của x để biểu thức nguyên.
Hướng dẫn giải:
Đkxđ: x ≠ -1.
Ta có:
⇔ x + 1 ∈ Ư(2) = {-2; -1; 1; 2}
⇔ x ∈ {-3; -2; 0; 1}.
Vậy với x ∈ {-3; -2; 0; 1} thì biểu thức A nguyên.
Ví dụ 3: Tìm x để biểu thức đạt giá trị nguyên.
Hướng dẫn giải:
Đkxđ: x ≥ 0.
Ta có:
Ta có: với mọi x
⇒
Áp dụng bất đẳng thức Cô-si ta có:
P đạt giá trị nguyên ⇔ P = 1
Vậy với thì biểu thức P đạt giá trị nguyên.
Bài 1: Giá trị nào của x dưới đây không làm cho biểu thức nguyên.
A. 1/4 B. 4 C. 2 D. 0.
Đáp án: C
Bài 2: Có bao nhiêu giá trị nguyên của x để biểu thức nguyên?
A. 3 B. 4 C. 6 D. 8
Đáp án: B
Bài 3: Có tất cả bao nhiêu giá trị nguyên của x để biểu thức nguyên?
A. 2 B. 3 C. 4 D. 5
Đáp án: B
Bài 4: Với tất cả các số nguyên x, giá trị nguyên lớn nhất của biểu thức là:
A. 1 B. 2 C. 3 D. 4
Đáp án: D
Bài 5: Có bao nhiêu giá trị của x để biểu thức nguyên?
A. 2 B. Vô số C. 3 D. 1
Đáp án: B
Bài 6: Tìm các giá trị nguyên của x để các biểu thức dưới đây nguyên:
Hướng dẫn giải:
a) Đkxđ: x ≠ -3.
A ∈ Z ⇔ ⇔ x + 3 ∈ Ư(3) = {-3; -1; 1; 3} ⇔ x ∈ {-6; -4; -2; 0}
b) Đkxđ: x ≠ 1/3 .
B ∈ Z ⇔ ⇔ 1 – 3x ∈ Ư(6) = {-6; -3;-2; -1; 1; 2; 3; 6}
Ta có bảng:
Trong các giá trị trên, chỉ có x = 1 hoặc x = 0 thỏa mãn x nguyên.
Vậy x = 0 hoặc x = 1.
c) ⇔ 2 – 3√x ∈ Ư(2) = {-2; -1; 1; 2}
Ta có bảng sau:
Trong các giá trị trên chỉ có x = 1 hoặc x = 0 thỏa mãn.
Vậy x = 0 hoặc x = 1.
Bài 7: Tìm các giá trị nguyên của x để các biểu thức dưới đây nguyên:
Hướng dẫn giải:
a)
Đkxđ: x ≥ 0; x ≠ 4 .
Ta có: .
M ∈ Z ⇔ ∈ Z ⇔ 2 – √x ∈ Ư(5) = {-5; -1; 1; 5}.
Ta có bảng:
Vậy với x ∈ {49; 9; 1} thì biểu thức M có giá trị nguyên.
b)
Đkxđ: x ≥ 0 ; x ≠ 4 .
Ta có:
N ∈ Z ⇔ ⇔ √x – 2 Ư(7) = {-7; -1; 1; 7}.
Ta có bảng sau:
Vậy với x ∈ {1; 9; 81} thì biểu thức nhận giá trị nguyên.
Bài 8: Tìm các giá trị của x để các biểu thức nguyên
Hướng dẫn giải:
Điều kiện: x ≥ 0 .
Ta có: x – 2√x + 2 = x – 2√x + 1 + 1 = (√x – 1)2 + 1 ≥ 1 > 0
⇒ 0 < P ≤ 3.
P nguyên ⇔ P ∈ {1; 2; 3}.
+ P = 1 ⇔ x – 2√x + 2 = 1 ⇔ x – 2√x + 1 = 0 ⇔ √x – 1 = 0 ⇔ x = 1.
+ P = 2 ⇔ x – 2√x + 2 = 1/4 ⇔ (√x – 1)2 = -3/4 < 0. Vô nghiệm.
+ P = 3 ⇔ x – 2√x + 2 = 1/9 ⇔ (√x – 1)2 = -8/9 < 0. Vô nghiệm.
Vậy chỉ có x = 1 làm cho P nguyên.
Bài 9: Chứng minh rằng biểu thức không nguyên với mọi giá trị của x làm cho biểu thức xác định.
Hướng dẫn giải:
Ta có:
Áp dụng bất đẳng thức Cô-si ta có:
Mà Q > 0 với mọi x.
⇒ 0 < Q ≤ 1/2
Vậy không có giá trị nào của x làm cho Q nguyên.
Bài 10: Cho
a) Rút gọn biểu thức P.
b) Tìm x để biểu thức nguyên.
Hướng dẫn giải:
a) Điều kiện xác định: x > 0; x ≠ 1.
b) Ta có:
Áp dụng bất đẳng thức Cô-si ta có:
⇒ hay 0 < Q ≤ 2.
Q nguyên ⇔ Q = 1 hoặc Q = 2.
+ Q = 1
+ Q = 2
⇔ x = 1 (không t.m đkxđ).
Vậy với thì biểu thức Q có giá trị nguyên.
Bài 1. Tìm các giá trị nguyên của x biểu thức sau có giá trị nguyên
a) 3xx−3;
b) x6x+1;
c) x+5x+3.
Bài 2. Tìm x nguyên để các biểu thức sau nguyên
a) x+3x+1;
b) 1x−x+1.
Bài 3. Tìm x nguyên để biểu thức M = xx+2−x+4x−4:2x−1x−2x−1x nguyên.
Bài 4. Cho biểu thức A = 2xx+3+x+1x−3+3−11×9−xvà B = x−3x+1.
a) Tính giá trị của B khi x = 36;
b) Rút gọn A;
c) Tìm số nguyên x để P = A.B là số nguyên.
Bài 5. Cho biểu thức
P = 1x−1−2xxx−x+x−1:x+xxx+x+x+1+1x+1với x≥0,x≠1
Hãy tìm x nguyên để P nguyên.
Mục lục các Chuyên đề Toán lớp 9:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn