Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết)

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết) – Tổng hợp Lý thuyết Toán 8 hay, chi tiết giúp học sinh nắm vững kiến thức trọng tâm Toán 8.-Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết)

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm
Lý thuyết Phương trình chứa dấu giá trị tuyệt đối.

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối

Bài giảng: Bài 5: Phương trình chứa dấu giá trị tuyệt đối – Cô Vương Thị Hạnh (Giáo viên Meraki Center)

1. Nhắc lại về giá trị tuyệt đối

Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Ví dụ: Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:

a) A = | x – 1 | + 3 – x khi x ≥ 1.

b) B = 3x – 1 + | – 2x | khi x < 0.

Lời giải:

a) Khi x ≥ 1 ta có x – 1 ≥ 0 nên | x – 1 | = x – 1

Do đó A = | x – 1 | + 3 – x = x – 1 + 3 – x = 2.

b) Khi x < 0 ta có – 2x > 0 nên | – 2x | = – 2x

Do đó B = 3x – 1 + | – 2x | = 3x – 1 – 2x = x – 1.

2. Giải một số phương trình chứa dấu giá trị tuyệt đối

a) Phương pháp chung

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối

Xem thêm  Ngôn ngữ nói và ngôn ngữ viết lớp 11 (Lý thuyết, Bài tập)

Bước 2: Rút gọn hai vế của phương trình, giải phương trình

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét

Bước 4: Kết luận nghiệm

b) Một số dạng cơ bản

DạngLý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

hoặcLý thuyết Phương trình chứa dấu giá trị tuyệt đối | Lý thuyết và Bài tập Toán 8 có đáp án

Dạng | A | = | B | ⇔ A = B hay A = – B.

Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối

+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.

+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.

+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.

+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.

Ví dụ: Giải bất phương trình | 4x | = 3x + 1

Lời giải:

Ta có | 4x | = 3x + 1

+ Với x ≥ 0 ta có | 4x | = 4x

Khi đó phương trình trở thành 4x = 3x + 1

⇔ 4x – 3x = 1 ⇔ x = 1.

Giá trị x = 1 thỏa mãn điều kiện x ≥ 0, nên 1 là một nghiệm của phương trình đã cho

+ Với x < 0 ta có | 4x | = – 4x

Khi đó phương trình trở thành – 4x = 3x + 1

⇔ – 4x – 3x = 1 ⇔ – 7x = 1 ⇔ x = – 1/7.

Giá trị x = – 1/7 thỏa mãn điều kiện x < 0, nên – 1/7 là một nghiệm cần tìm.

Vậy phương trình đã cho có tập nghiệm là S = { – 1/7;1 }

Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:

a) A = 3x + 2 + | 5x | với x > 0.

b) A = | 4x | – 2x + 12 với x < 0.

Xem thêm  Toán 8 Kết nối tri thức Luyện tập chung (trang 40, 41)

c) A = | x – 4 | – x + 1 với x < 4

Lời giải:

a) Với x > 0 ⇒ | 5x | = 5x

Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2

Vậy A = 8x + 2.

b) Ta có: x < 0 ⇒ | 4x | = – 4x

Khi đó ta có: A = | 4x | – 2x + 12 = – 4x – 2x + 12 = 12 – 6x

Vậy A = 12 – 6x.

c) Ta có: x < 4 ⇒ | x – 4 | = 4 – x

Khi đó ta có: A = | x – 4 | – x + 1 = 4 – x – x + 1 = 5 – 2x.

Vậy A = 5 – 2x

Bài 2: Giải các phương trình sau:

a) | 2x | = x – 6

b) | – 5x | – 16 = 3x

c) | 4x | = 2x + 12

d) | x + 3 | = 3x – 1

Lời giải:

a) Ta có: | 2x | = x – 6

+ Với x ≥ 0, phương trình tương đương: 2x = x – 6 ⇔ x = – 6.

Không thỏa mãn điều kiện x ≥ 0.

+ Với x < 0, phương trình tương đương: – 2x = x – 6 ⇔ – 3x = – 6 ⇔ x = 2.

Không thỏa mãn điều kiện x < 0.

Vậy phương trình đã cho vô nghiệm.

b) Ta có: | – 5x | – 16 = 3x

+ Với x ≥ 0, phương trình tương đương: 5x – 16 = 3x ⇔ 2x = 16 ⇔ x = 8

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: – 5x – 16 = 3x ⇔ 8x = – 16 ⇔ x = – 2

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { – 2;8 }

c) Ta có: | 4x | = 2x + 12

+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6

Thỏa mãn điều kiện x ≥ 0

+ Với x < 0, phương trình tương đương: – 4x = 2x + 12 ⇔ – 6x = 12 ⇔ x = – 2

Xem thêm  Lý thuyết Khái niệm hai tam giác đồng dạng lớp 8 (hay, chi tiết)

Thỏa mãn điều kiện x < 0

Vậy phương trình đã cho có tập nghiệm là S = { – 2;6 }

d) Ta có: | x + 3 | = 3x – 1

+ Với x ≥ – 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ – 2x = – 2 ⇔ x = 1.

Thỏa mãn điều kiện x ≥ – 3

+ Với x < – 3, phương trình tương đương: – x – 3 = 3x + 1 ⇔ – 4x = 4 ⇔ x = – 1

Không thỏa mãn điều kiện x < – 3

Vậy phương trình đã cho có tập nghiệm là S = { 1 }

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *