Lý thuyết Phương trình đường thẳng lớp 10 (hay, chi tiết) – Tổng hợp lý thuyết Toán 10 hay, chi tiết giúp học sinh nắm vững kiến thức trọng tâm môn Toán 10.-Lý thuyết Phương trình đường thẳng lớp 10 (hay, chi tiết)
Lý thuyết Phương trình đường thẳng lớp 10 (hay, chi tiết)
Bài viết Lý thuyết Phương trình đường thẳng lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm
Lý thuyết Phương trình đường thẳng.
Lý thuyết Phương trình đường thẳng
Bài giảng: Bài 1: Phương trình đường thẳng – Thầy Lê Thành Đạt (Giáo viên VietJack)
Vectơ được gọi là vectơ chỉ phương của đường thẳng ∆ nếu ≠ và giá của song song hoặc trùng với ∆.
Nhận xét. Một đường thẳng có vô số vectơ chỉ phương.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTCP = (a; b)
=> phương trình tham số của đường thẳng ∆ có dạng
Nhận xét. Nếu đường thẳng ∆ có VTCP = (a; b)
thì có hệ số góc k =
Vectơ được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu ≠ và vuông góc với vectơ chỉ phương của ∆.
Nhận xét.
+) Một đường thẳng có vô số vectơ pháp tuyến.
Đường thẳng ∆ đi qua điểm M0(x0, y0) và có VTPT = (A; B)
=> phương trình tổng quát của đường thẳng ∆ có dạng
A(x – x0) + B(y – y0) = 0 hay Ax + By + C = 0 với C = –Ax0 – By0.
Nhận xét.
+) Nếu đường thẳng ∆ có VTPT = (A; B) thì có hệ số góc k =
+) Nếu A, B, C đều khác 0 thì ta có thể đưa phương trình tổng quát về dạng
Phương trình này được gọi là phương trình đường thẳng theo đoạn chắn, đường thẳng này cắt Ox và Oy lần lượt tại M(a0; 0) và N(0; b0).
Xét hai đường thẳng có phương trình tổng quát là
∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0
Tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
+) Nếu hệ có một nghiệm (x0; y0) thì ∆1 cắt ∆2 tại điểm M0(x0, y0).
+) Nếu hệ có vô số nghiệm thì ∆1 trùng với ∆2.
+) Nếu hệ vô nghiệm thì ∆1 và ∆2 không có điểm chung, hay ∆1 song song với ∆2
Cách 2. Xét tỉ số
Cho hai đường thẳng
∆1: a1x + b1y + c1 = 0 có VTPT = (a1; b1);
∆2: a2x + b2y + c2 = 0 có VTPT = (a2; b2);
Gọi α là góc tạo bởi giữa hai đường thẳng ∆1 và ∆2
Khi đó
Khoảng cách từ M0(x0, y0) đến đường thẳng ∆: ax + by + c = 0 được tính theo công thức
Nhận xét. Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0 cắt nhau thì phương trình hai đường phân giác của góc tạo bởi hai đường thẳng trên là:
1. Phương trình đường tròn có tâm và bán kính cho trước
Trong mặt phẳng Oxy, đường tròn (C ) tâm I(a; b) bán kính R có phương trình:
(x – a)2 + (y – b)2 = R2
Chú ý. Phương trình đường tròn có tâm là gốc tọa độ O và bán kính R là x2 + y2 = R2
2. Nhận xét
+) Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể viết dưới dạng
x2 + y2 – 2ax – 2by + c = 0
trong đó c = a2 + b2 – R2.
+) Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi a2 + b2 – c2 > 0. Khi đó, đường tròn (C) có tâm I(a; b), bán kính R =
3. Phương trình tiếp tuyến của đường tròn
Cho đường tròn (C) có tâm I(a; b) và bán kính R.
Đường thẳng Δ là tiếp tuyến với (C) tại điểm Mo(xo; yo).
Ta có
+) Mo(xo; yo) thuộc Δ.
+) = (x0 – a; y0 – b) là vectơ pháp tuyến của Δ.
Do đó Δ có phương trình là
(xo – a).(x – xo) + (yo – b).(y – yo) = 0.
1. Định nghĩa: Cho hai điểm cố định F1 và F2 với F1F2 = 2c (c > 0). Tập hợp các điểm M thỏa mãn MF1 + MF2 = 2a (a không đổi và a > c > 0) là một đường Elip.
+) F1, F2 là hai tiêu điểm.
+) F1F2 = 2c là tiêu cự của Elip
2. Phương trình chính tắc của Elip
(E): = 1 với a2 = b2 + c2
Do đó điểm M(xo; yo) ∈ (E) <=> = 1 và |xo| ≤ a, |yo| ≤ b.
3. Tính chất và hình dạng của Elip
+) Trục đối xứng Ox (chứa trục lớn), Oy (chứa trục bé).
+) Tâm đối xứng O.
+) Tọa độ các đỉnh A1(–a; 0), A2(a; 0), B1(0; –b), B2(0; b).
+) Độ dài trục lớn 2a. Độ dài trục bé 2b.
+) Tiêu điểm F1(–c; 0), F2(c; 0).
+) Tiêu cự 2c.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
Lời giải bài tập lớp 10 sách mới:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn