Bài 1.20 trang 39 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 – Tuyển chọn giải Toán 11 Kết nối tri thức Tập 1, Tập 2 hay, chi tiết giúp bạn làm bài tập Toán 11.-Bài 1.20 trang 39 Toán 11 Tập 1 – Kết nối tri thức
Bài 1.20 trang 39 Toán 11 Tập 1 – Kết nối tri thức
Giải Toán 11 Bài 4: Phương trình lượng giác cơ bản – Kết nối tri thức
Bài 1.20 trang 39 Toán 11 Tập 1: Giải các phương trình sau:
a) sin 2x + cos 4x = 0;
b) cos 3x = – cos 7x.
Lời giải:
a) sin 2x + cos 4x = 0
⇔ cos 4x = – sin 2x
⇔ cos 4x = sin(– 2x)
⇔ cos 4x = cosπ2−−2x
⇔ cos 4x = cosπ2+2x
⇔4x=π2+2x+k2π4x=−π2+2x+k2πk∈ℤ
⇔x=π4+kπx=−π12+kπ3 k∈ℤ
Vậy phương trình đã cho có các nghiệm là x=π4+kπ, k∈ℤ và x=−π12+kπ3,k∈ℤ .
b) cos3x = −cos7x
⇔ cos3x = cos(π + 7x)
⇔ 3x=π+7x+k2π3x=−(π+7x)+k2π(k∈ℤ).
⇔ x=−π4−kπ2x=−π10+kπ5(k∈ℤ)
Vậy phương trình đã cho có các nghiệm là:
x = −π4-kπ2 (k ∈ ℤ) và x = −π10-kπ5 (k ∈ ℤ).
Lời giải bài tập Toán 11 Bài 4: Phương trình lượng giác cơ bản hay, chi tiết khác:
Các bài học để học tốt Toán 11 Bài 4: Phương trình lượng giác cơ bản:
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
Nội dung được phát triển bởi đội ngũ Meraki Center với mục đích chia sẻ và tăng trải nghiệm khách hàng. Mọi ý kiến đóng góp xin vui lòng liên hệ tổng đài chăm sóc: 1900 0000 hoặc email: hotro@merakicenter.edu.vn